Simple high-resolution 3D microscopy by a dielectric microsphere: a proof of concept

Author:

Abbasian Vahid12ORCID,Darafsheh Arash1ORCID,Moradi Ali-Reza2ORCID

Affiliation:

1. Washington University School of Medicine in St. Louis

2. Institute for Advanced Studies in Basic Sciences (IASBS)

Abstract

We present a simple high-resolution approach for 3D and quantitative phase imaging (QPI). Our method makes the most of a glass microsphere (MS) for microscopy and a glass plate for lateral shearing self-referencing interferometry. The single MS serves all the functions of a microscope objective (MO) in digital holographic microscopy (DHM) while offering the advantages of compactness, lightness, and affordability. A proof-of-concept experiment is performed on a standard diffraction grating, and various effective parameters on the imaging performance are investigated. The results are validated by atomic force microscopy and Mirau-DHM, and 3D morphometric information of the sample under inspection is obtained. The technique is then applied for 3D quantitative measurement and visualization of a human red blood cell, proving the principle of our easy-to-implement and vibration-immune arrangement for high-contrast label-free QPI of biological samples, and its utility in cell morphology, identification, and classification.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Terahertz tunable three-dimensional photonic jets;Scientific Reports;2024-07-17

2. Photonic hook propagation from eccentric microcylinder;Physica Scripta;2024-05-02

3. Design and fabrication of universal resolution targets for microsphere-assisted microscopy;Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXXI;2024-03-12

4. Quantitative phase microscopy by a glass microsphere and plate;Quantitative Phase Imaging X;2024-03-12

5. A dataset of digital holograms of normal and thalassemic cells;Scientific Data;2024-01-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3