Affiliation:
1. Washington University School of Medicine in St. Louis
2. Institute for Advanced Studies in Basic Sciences (IASBS)
Abstract
We present a simple high-resolution approach for 3D and quantitative phase imaging (QPI). Our method makes the most of a glass microsphere (MS) for microscopy and a glass plate for lateral shearing self-referencing interferometry. The single MS serves all the functions of a microscope objective (MO) in digital holographic microscopy (DHM) while offering the advantages of compactness, lightness, and affordability. A proof-of-concept experiment is performed on a standard diffraction grating, and various effective parameters on the imaging performance are investigated. The results are validated by atomic force microscopy and Mirau-DHM, and 3D morphometric information of the sample under inspection is obtained. The technique is then applied for 3D quantitative measurement and visualization of a human red blood cell, proving the principle of our easy-to-implement and vibration-immune arrangement for high-contrast label-free QPI of biological samples, and its utility in cell morphology, identification, and classification.
Subject
Atomic and Molecular Physics, and Optics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献