Higher-order nodal ring photonic semimetal

Author:

Zhang Yuexin,Tang Jie,Dai XiaoyuORCID,Zhang Sheng1,Xiang YuanjiangORCID

Affiliation:

1. China Maritime Police Academy

Abstract

The intriguing discovery of higher-order topology has tremendously promoted the development of topological physics. Three-dimensional topological semimetals have emerged as an ideal platform for investigating novel topological phases. Consequently, new proposals have been theoretically revealed and experimentally realized. However, most existing schemes are implemented on the acoustic system, while similar concepts are rarely launched in photonic crystals due to the complicated optical manipulation and geometrical design. In this Letter, we propose a higher-order nodal ring semimetal protected by C2 symmetry originating from C6 symmetry. The higher-order nodal ring is predicted in three-dimensional momentum space with desired hinge arcs connected by two nodal rings. Fermi arcs and topological hinge modes generate significant marks in higher-order topological semimetals. Our work successfully proves the presence of a novel higher-order topological phase in photonic systems that we will strive to apply practically in high-performance photonic devices.

Funder

Natural Science Foundation of Hunan Province

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3