Multiple plasmon-induced transparency based on black phosphorus and graphene for high-sensitivity refractive index sensing

Author:

Chen ShuxianORCID,Zeng Liang,Li Jiaqi,Weng Jun,Li Junyi,Xu Pengbai1,Liu Wenjie1,Sun Yuehui1ORCID,Yang Jun1,Qin Yuwen1ORCID,Wen Kunhua1

Affiliation:

1. Guangdong University of Technology

Abstract

A hybrid bilayer black phosphorus (BP) and graphene structure with high sensitivity is proposed for obtaining plasmon-induced transparency (PIT). By means of surface plasmon resonance in the rectangular-ring BP structure and ribbon graphene structure, a PIT effect with high refractive index sensitivity is achieved, and the surface plasmon hybridization between graphene and anisotropic BP is analyzed theoretically. Meanwhile, the PIT effect is quantitatively described using the coupled oscillator model and the strong coherent coupling phenomena are analyzed by adjusting the coupling distance between BP and graphene, the Fermi level of graphene, and the crystal orientation of BP, respectively. The simulation results show that the refractive index sensitivity S = 7.343 THz/RIU has been achieved. More importantly, this is the first report of tunable PIT effects that can produce up to quintuple PIT windows by using the BP and graphene hybrid structure. The high refractive index sensitivity of the quintuple PIT system for each peak is 3.467 THz/RIU, 3.467 THz/RIU, 3.600 THz/RIU, 4.267 THz/RIU, 4.733 THz/RIU and 6.133 THz/RIU, respectively, which can be used for multiple refractive index sensing function.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Major Special Projects in Guangdong Province

Natural Science Foundation of Guangdong Province

Guangdong Introducing Innovative and Entrepreneurial Teams of “The Pearl River Talent Recruitment Program”

the Program of Marine Economy Development Special Fund (Six Marine Industries) under Department of Natural Resources of Guangdong Province

the Engineering Research Center of Digital Imaging and Display, Ministry of Education, Soochow University

2021 Characteristic Innovation Research Project for University Teachers

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3