Affiliation:
1. Guangdong University of Technology
Abstract
A hybrid bilayer black phosphorus (BP) and graphene structure with high sensitivity is proposed for obtaining plasmon-induced transparency (PIT). By means of surface plasmon resonance in the rectangular-ring BP structure and ribbon graphene structure, a PIT effect with high refractive index sensitivity is achieved, and the surface plasmon hybridization between graphene and anisotropic BP is analyzed theoretically. Meanwhile, the PIT effect is quantitatively described using the coupled oscillator model and the strong coherent coupling phenomena are analyzed by adjusting the coupling distance between BP and graphene, the Fermi level of graphene, and the crystal orientation of BP, respectively. The simulation results show that the refractive index sensitivity S = 7.343 THz/RIU has been achieved. More importantly, this is the first report of tunable PIT effects that can produce up to quintuple PIT windows by using the BP and graphene hybrid structure. The high refractive index sensitivity of the quintuple PIT system for each peak is 3.467 THz/RIU, 3.467 THz/RIU, 3.600 THz/RIU, 4.267 THz/RIU, 4.733 THz/RIU and 6.133 THz/RIU, respectively, which can be used for multiple refractive index sensing function.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Major Special Projects in Guangdong Province
Natural Science Foundation of Guangdong Province
Guangdong Introducing Innovative and Entrepreneurial Teams of “The Pearl River Talent Recruitment Program”
the Program of Marine Economy Development Special Fund (Six Marine Industries) under Department of Natural Resources of Guangdong Province
the Engineering Research Center of Digital Imaging and Display, Ministry of Education, Soochow University
2021 Characteristic Innovation Research Project for University Teachers
Subject
Atomic and Molecular Physics, and Optics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献