Correlations between incident and emission polarization in nanowire-particle coupled junctions

Author:

Li Yuanyuan,Li Pan1,Zhang Meng,Wang Dong,Yang Longkun,Guan Zhiqiang23,Li Zhipeng

Affiliation:

1. Beijing Academy of Science and Technology

2. Wuhan University

3. Wuhan Institute of Quantum Technology

Abstract

Plasmonic nanostructures with subwavelength confinement are of great importance for the development of integrated nanophotonic circuits and devices. Here, we experimentally investigate how the polarization of the emitted light from nanowire-particle junction relies on the incident polarization. We demonstrate that the correlations can be effectively modulated by the particle position relative to the wire. By varying the wire-particle gap with only several nanometers, the nanowire-particle junction can be changed from polarization maintainer to rotator. Then, by moving the particle along the wire within half of the surface plasmon polariton (SPP) beat, the polarization behaviors can be tuned from positive to negative correlation. The mechanism can be well understood by the hybridization of wire-particle coupled mode and propagating SPP modes, which is verified by finite-difference time-domain simulations. These findings would provide a new degree of freedom for manipulating light polarization at the nanometer scale and additional flexibility for constructing nanophotonic devices.

Funder

Beijing Municipal Natural Science Foundation

National Key Research and Development Program of China

National Natural Science Foundation of China

Beijing Municipal Reform and Development Project

National Youth Talent Support Program

Training Program of the Major Research Plan of Capital Normal University

Scientific Research Base Development Program of Beijing Municipal Commission of Education and the Beijing Key Laboratory of Metamaterials and Devices

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3