Direct frequency domain fluorescence lifetime imaging using simultaneous ultraviolet and visible excitation

Author:

Serafino Michael J.,Jo Javier A.

Abstract

Due to the complexity, limited practicality, and cost of conventional fluorescence lifetime imaging/microscopy (FLIM) instrumentation, FLIM adoption has been mostly limited to academic settings. We present a novel point scanning frequency-domain (FD) FLIM instrumentation design capable of simultaneous multi-wavelength excitation, simultaneous multispectral detection, and sub-nanosecond to nanosecond fluorescence lifetime estimation. Fluorescence excitation is implemented using intensity-modulated CW diode lasers that are available in a selection of wavelengths spanning the UV-VI-NIR range (375-1064 nm). Digital laser intensity modulation was adopted to enable simultaneous frequency interrogation at the fundamental frequency and corresponding harmonics. Time-resolved fluorescence detection is implemented using low-cost, fixed-gain, narrow bandwidth (100 MHz) avalanche photodiodes, thus, enabling cost-effective fluorescence lifetime measurements at multiple emission spectral bands simultaneously. Synchronized laser modulation and fluorescence signal digitization (250 MHz) is implemented using a common field-programmable gate array (FPGA). This synchronization reduces temporal jitter, which simplifies instrumentation, system calibration, and data processing. The FPGA also allows for the implementation of the real-time processing of the fluorescence emission phase and modulation at up to 13 modulation frequencies (processing rate matching the sampling rate of 250 MHz). Rigorous validation experiments have demonstrated the capabilities of this novel FD-FLIM implementation to accurately measure fluorescence lifetimes in the range of 0.5-12 ns. In vivo endogenous, dual-excitation (375nm/445nm), multispectral (four bands) FD-FLIM imaging of human skin and oral mucosa at 12.5 kHz pixel rate and room-light conditions was also successfully demonstrated. This versatile, simple, compact, and cost-effective FD-FLIM implementation will facilitate the clinical translation of FLIM imaging and microscopy.

Funder

National Institutes of Health

Cancer Prevention and Research Institute of Texas

Tobacco Settlement Endowment Trust

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3