Abstract
In this work, we have theoretically studied the four-level atomic system for the measurement of a microwave (MW) field. We employed the electromagnetically induced transparency (EIT) technique for finding the MW field in the presence of a Laguerre–Gaussian (LG) beam as a coupling light. We have shown that, by the application of LG modes, narrower dips for the probe absorption spectrum can be generated, which can be easily identified and gives better resolution compared with the Gaussian mode. An exact location of dips in the probe absorption spectrum is found, and it is useful in the measurement of MW fields. We have estimated the FWHM of the probe absorption spectrum for Gaussian and LG coupling cases as
3.74
×
10
5
H
z
and
1.07
×
10
5
H
z
, respectively. Based on FWHM, we have found that minimum change in MW electric field in the order of
3.32
µ
V
c
m
−
1
will be detectable in the case of the LG mode as a coupling beam.
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献