Generation of high-dimensional caustic beams via phase holograms using angular spectral representation

Author:

Sun Zhuo,Hu Juntao,Wang Yishu,Ye Wenni,Qian Yixian,Li Xinzhong1ORCID

Affiliation:

1. Henan University of Science and Technology

Abstract

Using angular spectral representation, we demonstrate a generalized approach for generating high-dimensional elliptic umbilic and hyperbolic umbilic caustics by phase holograms. The wavefronts of such umbilic beams are investigated via the diffraction catastrophe theory determined by the potential function, which depends on the state and control parameters. We find that the hyperbolic umbilic beams degenerate into classical Airy beams when the two control parameters are simultaneously equal to zero, and elliptic umbilic beams possess an intriguing autofocusing property. Numerical results demonstrate that such beams exhibit clear umbilics in 3D caustic, which link the two separated parts. The dynamical evolutions verify that they both possess prominent self-healing properties. Moreover, we demonstrate that hyperbolic umbilic beams follow along a curve trajectory during propagation. As the numerical calculation of diffraction integral is relatively complex, we have developed an effective approach for successfully generating such beams by using phase hologram represented by angular spectrum. Our experimental results are in good agreement with the simulations. Such beams with intriguing properties are likely to be applied in emerging fields such as particle manipulation and optical micromachining.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Jinhua Science and Technology Bureau

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3