Competitive fiber optic sensors for the highly selective detection of mercury in water

Author:

Patiño-Jurado Brayan1,Gaviria-Calderón Arturo1,Botero-Cadavid Juan F.1,Garcia-Sucerquia Jorge1ORCID

Affiliation:

1. Universidad Nacional de Colombia—Medellin Campus

Abstract

Two competitive fiber optic sensors for the rapid, sensitive, and highly selective detection of mercury in water are designed, fabricated, and evaluated. A wavelength-modulated sensor based on an etched single-mode–multimode–single-mode (E-SMS) optical fiber structure and an intensity-modulated sensor based on fiber optics with a slanted end were fabricated by readily reproducible methods. The sensors were activated with a nanostructured chitosan/maghemite ( CS/Fe2O3 ) composite thin film for the selective detection of mercury ions ( Hg2+ ) in water. The functionalized sensors were implemented to experimentally validate the potential of CS/Fe2O3 thin film for optical sensing of Hg2+ in drinking water. The sensor based on the E-SMS structure exhibited a wavelength-modulated response with a sensitivity of up to 290 pm/(µg/mL), and the sensor based on the slanted end structure showed an intensity-modulated response with a sensitivity of −0.07dBm/(µg/mL) . Validation of the experimental assay method proves the ability to selectively detect chemical interactions as low as 1 ng/mL (one part per billion) of Hg2+ in water for both sensors. The high specificity of the two sensors was demonstrated by evaluating their responses to a number of potentially interfering metal ions in water. These sensors are cost-effective, simple to construct, and easy to implement, which makes them very promising for the on-site detection and monitoring of mercury in bodies of water.

Funder

Fundación para la Promoción de la Investigación y la Tecnología del Banco de la República de Colombia

Minciencias, the Ministry of Science, Technology, and Innovation of Colombia

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3