Ultrafast polarization characterization with Mueller matrix based on optical time-stretch and spectral encoding

Author:

Feng Yuanhua,Weng Duanyu,Huang Jianwen,Song Jia,Zhou Ji,Liu Weiping,Li Zhaohui12

Affiliation:

1. Sun Yat-sen University

2. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)

Abstract

High-speed optical polarization characterization is highly desirable for a wide range of applications, including remote sensing, telecommunication, and medical diagnosis. The utilization of the Mueller matrix provides a superior systematic and comprehensive approach to represent polarization attributes when matter interacts with optical beams. However, the current measurement speed of Mueller matrix is limited to only seconds or milliseconds. In this study, we present an ultrafast Mueller matrix polarimetry (MMP) technique based on optical time-stretch and spectral encoding that enables us to achieve an impressive temporal resolution of 4.83 nanoseconds for accurate Mueller matrix measurements. The unique feature of optical time-stretch technology enables continuous, ultrafast single-shot spectroscopy, resulting in a remarkable speed of up to 207 MHz for spectral encoding Mueller matrix measurement. We have employed an effective Mueller linear reconstruction algorithm based on the measured modulation matrix, accounting for all potential non-ideal effects of polarization components like retardance error and azimuth error. To ensure high precision, prior to the actual measurement, high-order dispersion induced by time-stretch requires adjustment through proper modulation matrix design. Upon such correction, both the results of static and rapid dynamic samples measurements exhibit exceptional accuracy with root-mean-square error (RMSE) approximately equal to 0.04 and 0.07 respectively. This presented ultrafast MMP provides a significant advance over preceding endeavors, enabling superior accuracy and increased speed concurrently.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Guangzhou Basic and Applied Basic Research Foundation

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3