Photonic-assisted space-frequency two-dimensional compressive radar receiver for high-resolution and wide-range detection

Author:

Xu Yirong1,Li Shangyuan1,Zhu Zhengyuan1ORCID,Xue Xiaoxiao1,Zheng Xiaoping1ORCID,Zhou Bingkun1

Affiliation:

1. Tsinghua University

Abstract

Existing photonic compressive receivers have the problem of resolution deterioration when applied in wide-range radar detection. In this study, we propose a photonic-assisted space-frequency two-dimensional (2D) compressive radar receiver capable of achieving high-resolution detection in wide-range scenarios. For the space dimension, the compression process is realized by employing a spatially adaptive photonic projection basis, which guarantees complete mapping of arbitrarily delayed echoes—the key to high-resolution wide-range detection. For the frequency dimension, photonic compressive sensing is employed to further compress the bandwidth of the projected sparse signal. Therefore, the proposed system can achieve wide-range radar detection without resolution deterioration with compressed output. Herein, with two channels of 630 MHz outputs, high-resolution distance detection within a range of 21 km with a resolution of up to 2.3 cm is achieved. Moreover, inverse synthetic aperture radar (ISAR) imaging of two sets of four-point turntables distributed within the range of 21 km with a resolution of 2.3 cm × 5.7 cm is realized. The proposed photonic-assisted 2D compressive radar receiver is a viable solution to overcome the tradeoff between detection resolution and range of existing photonic compressive receivers, which indicates a path for the further development of high-resolution wide-range radar detection.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3