Affiliation:
1. Shanghai University
2. Université Paris-Saclay
3. Université de Paris
4. Politecnico di Torino
Abstract
Self-assembled nanogratings, inscribed by femtosecond laser writing in volume, are demonstrated in multicomponent alkali and alkaline earth containing alumino-borosilicate glasses. The laser beam pulse duration, pulse energy, and polarization, were varied to probe the nanogratings existence as a function of laser parameters. Moreover, laser-polarization dependent form birefringence, characteristic of nanogratings, was monitored through retardance measurements using polarized light microscopy. Glass composition was found to drastically impact the formation of nanogratings. For a sodium alumino-borosilicate glass, a maximum retardance of 168 nm (at 800 fs and 1000 nJ) could be measured. The effect of composition is discussed based on SiO2 content, B2O3/Al2O3 ratio, and the Type II processing window is found to decrease as both (Na2O + CaO)/Al2O3 and B2O3/Al2O3 ratios increase. Finally, an interpretation in the ability to form nanogratings from a glass viscosity viewpoint, and its dependency with respect to the temperature, is demonstrated. This work is brought into comparison with previously published data on commercial glasses, which further indicates the strong link between nanogratings formation, glass chemistry, and viscosity.
Funder
National Natural Science Foundation of China
Science and Technology Innovation Plan of Shanghai Science and Technology Commission
China Scholarship Council
Agence Nationale de la Recherche
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献