Development and performance validation of a low-cost algorithms-based hyperspectral imaging system for radiodermatitis assessment

Author:

Hao Shicheng,Xiong Ying,Guo Sisi,Gao Jing,Chen Xiaotong1,Zhang Ruoyu1,Liu Lihui,Wang JianfengORCID

Affiliation:

1. Beijing Institute of Technology

Abstract

Whilst radiotherapy (RT) is widely used for cancer treatment, radiodermatitis caused by RT is one most common severe side effect affecting 95% cancer patients. Accurate radiodermatitis assessment and classification is essential to adopt timely treatment, management and monitoring, which all depend on reliable and objective tools for radiodermatitis grading. We therefore, in this work, reported the development and grading performance validation of a low-cost (∼2318.2 CNY) algorithms-based hyperspectral imaging (aHSI) system for radiodermatitis assessment. The low-cost aHSI system was enabled through Monte Carlo (MC) simulations conducted on multi-spectra acquired from a custom built low-cost multispectral imaging (MSI) system, deriving algorithms-based hyper-spectra with spectral resolution of 1 nm. The MSI system was based on sequentially illuminated narrow-band light-emitting diodes (LEDs) and a CMOS camera. Erythema induced artificially on healthy volunteers was measured by the aHSI system developed, with algorithms-based hyper-spectra and skin layer resolved physiological parameters (i.e., the blood volume fraction (BVF) and the oxygen saturation of hemoglobin in blood, et. al.) derivation using MC simulations. The MC simulations derived BVF and the oxygen saturation of hemoglobin in blood showed significant (P < 0.001, analysis of variance: ANOVA) increase with erythema. Further 1D-convolution neural network (CNN) implemented on the algorithms-based hyper-spectra leads to an overall classification accuracy of 93.1%, suggesting the great potential of low-cost aHSI system developed for radiodermatitis assessment.

Funder

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

Beijing Institute of Technology Research Fund Program for Young Scholars

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3