Affiliation:
1. Beijing University of Posts and Telecommunications
Abstract
Quantum noise stream cipher based on quadrature-amplitude-modulation (QAM/QNSC) is a kind of physical layer encryption technology. However, the additional encryption penalty will significantly affect the practical deployment of QNSC, especially in the high capacity and long-haul transmission system. With our research, the encryption process of QAM/QNSC degrades the transmission performance of plaintext information. In this paper, we quantitatively analyze the encryption penalty of QAM/QNSC based on the proposed concept of effective minimum Euclidean distance. We calculate the theoretical signal-to-noise ratio sensitivity and encryption penalty of QAM/QNSC signals. A modified feedforward pilot-aided two-stage carrier phase recovery scheme is used to reduce the effect of laser phase noise and the encryption penalty. Experimental results achieve single-channel 205.9 Gbit/s 640km transmission with single carrier polarization-diversity-multiplexing 16-QAM/QNSC signal.
Funder
National Natural Science Foundation of China
Beijing Municipal Natural Science Foundation
the Project of Jiangsu Engineering Research Center of Novel Optical Fiber Technology and Communication Network, Soochow University under Grant SDGC2117
Subject
Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献