Forecasting stock market with nanophotonic reservoir computing system based on silicon optomechanical oscillators

Author:

Liu Bocheng1,Xie Yiyuan12,Jiang Xiao1,Ye Yichen1,Song Tingting3,Chai Junxiong1,Tang Qianfeng1,Feng Manying1

Affiliation:

1. Southwest University

2. University of Electronic Science and Technology of Chengdu

3. Chongqing Normal University

Abstract

The essence of stock market forecasting is to reveal the intrinsic operation rules of stock market, however it is a terribly arduous challenge for investors. The application of nanophotonic technology in the intelligence field provides a new approach for stock market forecasting with its unique advantages. In this work, a novel nanophotonic reservoir computing (RC) system based on silicon optomechanical oscillators (OMO) with photonic crystal (PhC) cavities for stock market forecasting is implemented. The long-term closing prices of four representative stock indexes are accurately forecast with small prediction errors, and the forecasting results with distinct characteristics are exhibited in the mature stock market and emerging stock market separately. Our work offers solutions and suggestions for surmounting the concept drift problem in stock market environment. The comprehensive influence of RC parameters on forecasting performance are displayed via the mapping diagrams, while some intriguing results indicate that the mature stock markets are more sensitive to the variation of RC parameters than the emerging stock markets. Furthermore, the direction trend forecasting results illustrate that our system has certain direction forecasting ability. Additionally, the stock forecasting problem with short listing time and few data in the stock market is solved through transfer learning (TL) in stock sector. The generalization ability (GA) of our nanophotonic reservoir computing system is also verified via four stocks in the same region and industry. Therefore, our work contributes to a novel RC model for stock market forecasting in the nanophotonic field, and provides a new prototype system for more applications in the intelligent information processing field.

Funder

Chongqing Normal University Ph.D. Startup Fund

Special funds for Postdoctoral research of Chongqing

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3