Compact real-time RF spectrum analyzer with 16 GHz instantaneous bandwidth based on photonic frequency-shifting loops

Author:

Guillet de Chatellus Hugues12ORCID

Affiliation:

1. UGA/CNRS

2. Univ Rennes

Abstract

Spectral analysis of broadband RF signals in real time is of primary importance for numerous applications. So far, the instantaneous bandwidth of real-time spectrum analyzers based on conventional digital techniques is limited to a few GHz. This limitation is set by the clock jitter of the analog-to-digital converters, and by the processing capabilities in real time of digital electronics. On the contrary, analog architectures based on microwave photonics are not constrained by such limitations, and offer potentially a very high instantaneous bandwidth. However, they generally suffer from inherent limitations, such as large footprint and high complexity. Here, we propose a much simpler architecture of RF spectrum analyzer based on frequency-shifting loops. It utilizes only compact commercial telecom components, a single CW laser, and slow electronic resources (10 MSa/s). The probability of intercept is 100%, the instantaneous bandwidth reaches 16 GHz, and the spectral and temporal resolutions are respectively equal to 160 MHz and 50 µs. Our system is expected to open new avenues in embedded applications of microwave photonics.

Funder

Université Grenoble Alpes

Centre National de la Recherche Scientifique

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-delay real-time photonic correlator for broadband RF signal processing;Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XVII;2024-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3