Three-dimensional particle streak velocimetry based on optical coherence tomography for assessing preimplantation embryo movement in mouse oviduct in vivo

Author:

Fang Tianqi,Han Huan,Sun Jingyu,Mukhamedjanova Aleese,Wang ShangORCID

Abstract

The mammalian oviduct (or fallopian tube) is a tubular organ hosting reproductive events leading to pregnancy. Dynamic 3D imaging of the mouse oviduct with optical coherence tomography (OCT) has recently emerged as a promising approach to study the hidden processes vital to elucidate the role of oviduct in mammalian reproduction and reproductive disorders. In particular, with an intravital window, in vivo OCT imaging is a powerful solution to studying how the oviduct transports preimplantation embryos towards the uterus for pregnancy, a long-standing question that is critical for uncovering the functional cause of tubal ectopic pregnancy. However, simultaneously tracking embryo movement and acquiring large-field-of-view images of oviduct activity in 3D has been challenging due to the generally limited volumetric imaging rate of OCT. A lack of OCT-based 3D velocimetry method for large, sparse particles acts as a technical hurdle for analyzing the mechanistic process of the embryo transport. Here, we report a new particle streak velocimetry method to address this hurdle. The method relies on the 3D streak of a moving particle formed during the acquisition of a single OCT volume, where double B-scans are acquired at each B-scan location to resolve ambiguity in assessing the movement of particle. We validated this method with the gold-standard, direct volumetric particle tracking in a flow phantom, and we demonstrated its in vivo applications for simultaneous velocimetry of embryos and imaging of oviduct. This work sets the stage for quantitative understanding of the oviduct transport function in vivo, and the method fills in a gap in OCT-based velocimetry, providing the potential to enable new applications in 3D flow imaging.

Funder

National Institutes of Health

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3