Deviation-based wavefront correction using the SPGD algorithm for high-resolution optical remote sensing

Author:

Hirose Makoto,Miyamura Norihide1,Sato Seichi

Affiliation:

1. Meisei University

Abstract

Model-free image-based wavefront correction techniques, such as the stochastic parallel gradient descent (SPGD) algorithm, will be useful in achieving diffraction-limited optical performance in near-future optical remote sensing systems. One difficulty facing the image-based method is that the correction performance depends on the evaluation metric and the evaluated scene. We propose several evaluation functions and investigate the relationship between the optimization speed and the scene textures for each metric in the SPGD algorithm. Based on the simulation results, the study experimentally compared wavefront correction performance using four cost functions and two extended aerial images. Consequently, we found that the deviation-based cost function allowed efficient wavefront correction for versatile extended scenes. In addition, observing extended scenes with distinct structures can facilitate correction speed. Furthermore, we numerically validated this approach in a segmented-aperture imaging system for large telescopes. We believe that the presented approach allows us to realize spaceborne remote sensing with unprecedented high angular resolution.

Funder

Japan Society for the Promotion of Science

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3