Multidimensional and multifunctional metasurface design using hybrid spin decoupling

Author:

Rind Yousaf Murtaza1,Mahmood NasirORCID,Mehmood Muhammad Qasim1ORCID,Tauqeer Tauseef1,Zubair MuhammadORCID,Massoud Yehia

Affiliation:

1. Information Technology University (ITU) of the Punjab

Abstract

Metasurfaces are nanometer-thick patterned interfaces that exhibit unprecedented control over the quintessential properties of light and provide a footing ground for many innovative optical effects and groundbreaking phenomena like metalenses, complex wavefront shaping, polarimetric sensing, etc. Often multifunctional metasurfaces enact a multitude of simultaneous functionalities by employing the photonic spin Hall effect (PSHE) that allows independent control of photons through spin-orbital interactions. However, the exhibited optical responses are locked to be opposite to each other, resulting in significant design complexities, cross-talk, and noise while adding more functionalities into a single device. Herein, we demonstrate multifunctional all-dielectric transmissive metasurfaces exploiting PSHE-based unique phase multiplexing as a generic designing method to provide independent control of orthogonal helicities, squeezing spin-dependent quad information channels with minimal observed noise and cross-talk. To authenticate the proposed concept, multifocal metalenses enabling spin-depended splitting in longitudinal and transverse directions are demonstrated, which generate two high-intensity focused spots under opposite handedness of the circularly polarized incidence and all four focus spots under the linearly polarized incidence of ultraviolet wavelengths. The proposed functional domain enhancement of metasurfaces with high-resolution phase modulation brings advances in compact multifunctional device design to the fields of microscopy, communication, data storage, imaging, etc.

Funder

King Abdullah University of Science and Technology

Publisher

Optica Publishing Group

Subject

Electronic, Optical and Magnetic Materials

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3