Lasing at a stationary inflection point

Author:

Herrero-Parareda A.ORCID,Furman N.ORCID,Mealy T.ORCID,Gibson R.ORCID,Bedford R.ORCID,Vitebskiy I.ORCID,Capolino F.ORCID

Abstract

The concept of lasers based on the frozen mode regime in active periodic optical waveguides with a 3rd-order exceptional point of degeneracy (EPD) is advanced. The frozen mode regime in a lossless and gainless waveguide is associated with a stationary inflection point (SIP) in the Bloch dispersion relation, where three Bloch eigenmodes coalesce forming the frozen mode. As a practical example, we consider an asymmetric serpentine optical waveguide (ASOW). An ASOW operating near the SIP frequency displays a large group delay of a non-resonant nature that scales as the cube of the waveguide length, leading to a strong gain enhancement when active material is included. Therefore, a laser operating in the close vicinity of an SIP has a gain threshold that scales as a negative cube of the waveguide length. We determine that this scaling law is maintained in the presence of small distributed losses, such as radiation associated with waveguide bends and roughness. In addition, we show that although gain causes a distortion in the modes coalescing at the SIP, the properties of the frozen mode are relatively resistant to such small perturbations and we still observe a large degree of exceptional degeneracy for gain values that bring the system above threshold. Finally, our study also reveals that lasing near an SIP is favored over lasing near a photonic band edge located in close proximity to the SIP. In particular, we observe that an SIP-induced lasing in an ASOW displays lower gain threshold compared to lasing near the photonic regular band edge (RBE), even though the SIP resonance has a lower quality factor than the RBE resonance.

Funder

Air Force Office of Scientific Research

Publisher

Optica Publishing Group

Subject

Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3