Affiliation:
1. University of California—Los Angeles
2. University of Tsukuba
Abstract
We present a technique to measure the rapid blood velocity in large retinal vessels with high spatiotemporal resolution. Red blood cell motion traces in the vessels were non-invasively imaged using an adaptive optics near-confocal scanning ophthalmoscope at a frame rate of 200 fps. We developed software to measure blood velocity automatically. We demonstrated the ability to measure the spatiotemporal profiles of the pulsatile blood flow with a maximum velocity of 95–156 mm/s in retinal arterioles with a diameter >100 µm. High-speed and high-resolution imaging increased the dynamic range, enhanced sensitivity, and improved the accuracy when studying retinal hemodynamics.
Funder
National Institutes of Health
W. M. Keck Foundation
Carl Marshall and Mildred Almen Reeves Foundation
Research to Prevent Blindness
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献