Inversion diffuse attenuation coefficient of photosynthetically active radiation based on deep learning

Author:

Chen Lei12,Pan Xiaoju3,Zhang Jie14,Demeaux Charlotte Begouen5ORCID,Wang Yongchao6

Affiliation:

1. China University of Petroleum (East China)

2. Chinese Academy of Sciences

3. Hainan Tropical Ocean University

4. First Institute of Oceanography

5. University of Maine

6. Ministry of Natural Resources

Abstract

Accurate estimation of the diffuse attenuation coefficient of photosynthetically active radiation, Kd(PAR), is critical for understanding and modeling key physical, chemical, and biological processes in waters. In this study, a deep learning model (DLKPAR) was developed for remotely estimating Kd(PAR). Compared to the traditional empirical algorithms and semi-analytical algorithm, DLKPAR demonstrated an improvement in the model’s stability and accuracy. By using in situ NOMAD data to evaluate the model’s performance, DLKPAR had lower root mean square difference (RMSD; 0.028 vs. 0.030-0.048 m-1) and mean absolute relative difference (MARD; 0.14 vs. 0.17-0.25) and higher R2 (0.94 vs. 0.82-0.94). The statistical results of the matchup NOMAD and Argo data to the MODIS also indicated DLKPAR improves the inversion accuracy of Kd(PAR) and could be applied to remotely estimate Kd(PAR) in the global oceans. Therefore, we anticipate that DLKPAR could yield reliable Kd(PAR) values from ocean color remote sensing, providing an accurate estimation of visible light attenuation in the upper ocean and facilitating biogeochemical cycle research.

Funder

National Natural Science Foundation of China

Finance Science and Technology Project of Hainan Province

Major Science and Technology Plan Project of Hainan Province

National Natural Science Foundation of China Key Program

Joint Funds of the National Natural Science Foundation of China key program

Key Laboratory of Space Ocean Remote Sensing and Application Open Fund

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3