Solving optimal carrier frequencies of a CGH null compensator through a double-constrained searching method based on iterative ray-tracings

Author:

Liang Zijian1ORCID,Zhao Hongyang1,Yang Yongying1

Affiliation:

1. Zhejiang University

Abstract

Interferometry based on a computer-generated hologram (CGH) null compensator is a general method for high-precision metrology of aspherics. Because the most commonly used CGHs are the Ronchi type with only two quantization steps, tilt and defocus carrier frequencies must always be introduced to separate the disturbing diffraction orders (DDOs). Determining the amount of carrier frequencies is a pivotal but difficult issue in the CGH design process. Previous studies have only drawn qualitative conclusions or obtained some approximate results under specific conditions. This paper proposes a double-constrained searching method based on iterative ray-tracings, which can directly and accurately give the optimal combination of tilt and defocus carrier frequencies, as long as the aspheric under test is a concave one and has an analytical expression. The optimal carrier frequencies solved by the proposed method will minimize the line density of the CGH on the premise of separating all DDOs, which will reduce the cost and difficulty of fabrication as much as possible. The proposed method is almost error-free and holds a clear advantage over the previous methods in terms of versatility. Several typical design examples are presented to verify the feasibility and versatility of the proposed method. Its accuracy is also verified through making comparisons of the ray-tracing results between another method and Zemax models based on these examples.

Funder

National Natural Science Foundation of China

State Key Laboratory of Modern Optical Instrumentation of Zhejiang University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3