Affiliation:
1. Optics Valley Laboratory
Abstract
The increasing demand for diverse portable high-precision spectral analysis applications has driven the rapid development of spectrometer miniaturization. However, the resolutions of existing miniaturized spectrometers mostly remain at the nanometer level, posing a challenge for further enhancement towards achieving picometer-level precision. Here, we propose an integrated reconstructive spectrometer that utilizes Mach–Zehnder interferometers and a tunable diffraction network. Through random tuning in the time domain and disordered diffraction in the space domain, the random speckle patterns closely related to wavelength information are obtained to construct the transmission matrix. Experimentally, we achieve a high resolution of 100 pm and precisely reconstruct multiple narrowband and broadband spectra. Moreover, the proposed spectrometer features a simple structure, strong portability, and fast sampling speed, which has great potential in the practical application of high-precision portable spectral analysis.
Funder
National Natural Science Foundation of China
Innovation Project of Optics Valley Laboratory