Off-plane quartz-enhanced photoacoustic spectroscopy

Author:

Luo Huijian,Li Junming,Lv Haohua,Xie JiabaoORCID,Wang Chenglong,Lin Haoyang,Zhuang Ruobin,Zhu WenguoORCID,Zhong YongchunORCID,Kan Ruifeng1,Yu Jianhui,Zheng HuadanORCID

Affiliation:

1. Anhui Institute of Optics and Fine Mechanics

Abstract

In this work, we developed off-plane quartz-enhanced photoacoustic spectroscopy (OP-QEPAS). In the OP-QEPAS the light beam went neither through the prong spacing of the quartz tuning fork (QTF) nor in the QTF plane. The light beam is in parallel with the QTF with an optimal distance, resulting in low background noise. A radial-cavity (RC) resonator was coupled with the QTF to enhance the photoacoustic signal by the radial resonance mode. By offsetting both the QTF and the laser position from the central axis, we enhance the effect of the acoustic radial resonance and prevent the noise generated by direct laser irradiation of the QTF. Compared to IP-QEPAS based on a bare QTF, the developed OP-QEPAS with a RC resonator showed a >10× signal-to-noise ratio (SNR) enhancement. The OP-QEPAS system has great advantages in the use of light emitting devices (LEDs), long-wavelength laser sources such as mid-infrared quantum cascade lasers, and terahertz sources. When employing a LED as the excitation source, the noise level was suppressed by ∼2 orders of magnitude. Furthermore, the radial and longitudinal resonance modes can be combined to further improve the sensor performance.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Fundamental Research Funds for the Central Universities

Foundation for Distinguished Young Talents in Higher Education of Guangdong

Open foundation of CEPREI

Special Project in Key Fields of the Higher Education Institutions of Guangdong Province

Chinese Aeronautical Establishment

Project of Guangzhou Industry Leading Talents

Key-Area Research and Development Program of Guangdong Province

Science and Technology Projects of Guangzhou

State Key Laboratory of Applied Optics

Special Funds for the Cultivation of Guangdong College Students' Scientific and Technological Innovation

National Innovation and Entrepreneurship Training Program For Undergraduate

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3