High security optical OFDM transmission scheme with four-dimensional region joint encryption based on power division multiplexing

Author:

Guo Zhiruo1,Liu Bo1,Ren Jianxin1,Zhong Qing1,Mao Yaya1,Wu Xiangyu1,Bai Yu1,Chen Shuaidong1,Wang Feng1,Ullah Rahat1ORCID,Zhao Lilong1,Chen Yunyun1

Affiliation:

1. Nanjing University of Information Science & Technology

Abstract

In this paper, a high security chaotic encryption scheme for orthogonal frequency division multiplexing (OFDM) transmission system is proposed by using power division multiplexing (PDM) technology and four-dimensional region joint encryption. The scheme uses PDM to realize simultaneous transmission of multiple user information, which can achieve a good compromise among system capacity, spectral efficiency and user fairness. In addition, bit cycle encryption, constellation rotation disturbance (CRD) and region joint constellation disturbance (RJCD) are used to realize four-dimensional region joint encryption, effectively improving the physical layer security. The masking factor is generated by the mapping of two-level chaotic systems, which can enhance the nonlinear dynamics and improve the sensitivity of encrypted system. A 11.76 Gb/s OFDM signal transmission over 25 km standard single-mode fiber (SSMF) is experimentally demonstrated. At the forward-error correction (FEC) bit error rate (BER) limit -3.8×10−3, the proposed receiver optical power based on quadrature phase shift keying (QPSK) without encryption, QPSK with encryption, variant-8quadrature amplitude modulation (V-8QAM) without encryption and V-8QAM with encryption are about -13.5dBm, -13.6dBm, -12.2dBm, and -12.1dBm. The key space is up to 10128. The results show that this scheme not only improves the security of the system and the ability to resist attackers, but also improves the system capacity and has the potential to serve more users. It has a good application prospect in the future optical network.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Jiangsu Provincial Key Research and Development Program

The Natural Science Foundation of the Jiangsu Higher Education Institutions of China

The Startup Foundation for Introducing Talent of NUIST

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3