Affiliation:
1. FYLA LASER S.L.
2. The Barcelona Institute of Science and Technology
3. University of Limoges
4. Universidad de Guanajuato
5. Sphere Ultrafast Photonics
6. Universidade do Porto
7. Imperial College
Abstract
Temporally coherent supercontinuum sources constitute an attractive alternative to bulk crystal-based sources of few-cycle light pulses. We present a monolithic fiber-optic configuration for generating transform-limited temporally coherent supercontinuum pulses with central wavelength at 1.06 µm and duration as short as 13.0 fs (3.7 optical cycles). The supercontinuum is generated by the action of self-phase modulation and optical wave breaking when pumping an all-normal dispersion photonic crystal fiber with pulses of hundreds of fs duration produced by all-fiber chirped pulsed amplification. Avoidance of free-space propagation between stages confers unequalled robustness, efficiency and cost-effectiveness to this novel configuration. Collectively, the features of all-fiber few-cycle pulsed sources make them powerful tools for applications benefitting from the ultrabroadband spectra and ultrashort pulse durations. Here we exploit these features and the deep penetration of light in biological tissues at the spectral region of 1 µm, to demonstrate their successful performance in ultrabroadband multispectral and multimodal nonlinear microscopy.
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献