Affiliation:
1. Key Laboratory of Space Photoelectric Detection and Perception of Ministry of Industry and Information Technology
Abstract
We propose what we believe to be a novel nonlinear optical limiting (NOL) method with a low limiting threshold based on a light intensity-controlled polarizability inversion suspension (PIS). This suspension has negative polarizability under weak light, allowing stable propagation of weak light with a low loss. Nevertheless, the suspension reverses into positive polarizability due to the optical Kerr effect under strong light, resulting in enhanced scattering that rapidly attenuates the intense light. In a proof-of-concept experiment, PS (polystyrene)-CS2-CCl4 suspension is used as the example suspension. We experimentally verify the NOL performance of several samples. Among them, 4 g/L PS-CS2-CCl4 suspension with a volume ratio of 0.15 has the best optical limiting effect, with a high limiting capacity coefficient of 0.48 and a very low limiting threshold of 14.80 kW/cm2, which is an order magnitude lower than that of most common NOL materials. Therefore, the proposed method provides a new promising approach to achieve NOL of continuous wave laser with a low limiting threshold.
Funder
National Natural Science Foundation of China