Inverse design of metasurfaces with customized transmission characteristics of frequency band based on generative adversarial networks

Author:

Wang Hai Peng12ORCID,Cao Du Ming1,Pang Xiao Yu3,Zhang Xiao Hong3,Wang Shi Yu1ORCID,Hou Wen Ying1,Nie Chen Chen,Li Yun Bo1

Affiliation:

1. Southeast University

2. Nanjing Xinda Institute of Safety and Emergency Management

3. The Research Institute for Special Structures of Aeronautical Composite AVIC

Abstract

In recent years, deep learning (DL) has demonstrated significant potential in the inverse design of metasurfaces, and the generation of metasurfaces with customized transmission characteristics of frequency band remains a challenging and underexplored area. In this study, we propose a DL-assisted method for the inverse design of transmissive metasurfaces. The method consists of a generative adversarial network (GAN)-based graph generator, an electromagnetic response predictor, and a genetic algorithm optimizer. By integrating these components, we can obtain customized metasurfaces with desired transmission characteristics of frequency band. We demonstrate the effectiveness of the proposed method through examples of inverse-designed three-layer cascaded transmissive metasurfaces with wideband, dual-band, and stopband responses in the 8∼12 GHz frequency range. Specifically, we realize three different types of dual-band metasurfaces, namely double-wide, front-wide and rear-narrow, and front-narrow and rear-wide configurations. Additionally, we analyze the accuracy and reliability of the inverse design method by employing data from the training dataset, self-defined objectives, and bandwidth-reduced target responses scaled from the wideband type as design inputs. Quantitative evaluation is performed using metrics such as mean absolute error and average precision. The proposed method successfully achieves the desired effect as intended.

Funder

National Natural Science Foundation of China

State Key Laboratory of Millimeter Waves

Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3