Direct detection system based on a single photodiode receiving the independent quadruple-SSB signal

Author:

Wang Leilei,Xiao Jiangnan,Zhou Ye,Ming Jun,Wu Dongyan,Chen Yilin,Hu Zheng,Zhao Li1ORCID

Affiliation:

1. Fudan University

Abstract

We propose and verify a direct detection (DD) system based on a single photodiode (PD) receiving the independent quadruple-single-sideband (quadruple-SSB) signal. At the transmitter side, an I/Q modulator is utilized to modulate the independent quadruple-SSB signal, the signal is received via one PD without optical bandpass filters (OBPFs). Then, the independent quadruple-SSB signal is separated into four sideband signals by subsequent digital signal processing (DSP). In the scheme of back-to-back (BTB), 1-km and 5-km standard single-mode fiber (SSMF) transmission, the four sideband signals are extensively studied and analyzed. The simulation results show that the bit error rate (BER) of 1Gbaud, 2Gbaud and 4Gbaud independent quadruple-SSB signal can reach the 7% hard-decision forward error correction (HD-FEC) threshold of 3.8 × 10−3 when the received optical power (ROP) is −21, −20 and −17.2 dBm in 5-km SSMF transmission. Meanwhile, as the frequency interval gets wider, the crosstalk in the sideband signal reception can be mitigated and the BER decreases. This scheme for the first time demonstrates that the independent quadruple-SSB signal can further expand the system transmission capacity and enhance the spectrum efficiency. Our simplified independent quadruple-SSB signal direct detection system has a simple structure and high spectral efficiency, which will have a promising future in high-speed optical communication.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

The project of Hunan Provincial Department of Education

Key Laboratory of Electromagnetic Wave Information Science

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3