Author:
Kruse Lars E.,Kühl Sebastian,Pachnicke Stephan
Abstract
We propose the use of spectral data-driven LSTM-based machine learning to improve generalized signal-to-noise ratio (gSNR) quality-of-transmission estimation in component parameter-agnostic network scenarios. We show gSNR estimation improvements up to 1.1 dB for unseen networks.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献