Generation and free-space transmission characterization of bottle vortex beam

Author:

Yang Jiaxiong1,Hu Wuli1,Wang Andong1,Zhu Long1ORCID

Affiliation:

1. Chongqing University of Posts and Telecommunications

Abstract

Vortex beams carrying orbital angular momentum (OAM) with the doughnut-shaped intensity distribution can be employed in free-space optical (FSO) communication links to circumvent obstructions. However, the size of the receiver aperture is proportional to the size of obstructions, which seriously constrains the application of OAM beams in this scenario. In this paper, we propose a method to generate bottle vortex beams (BVBs) with a parabolic trajectory by manipulating the radial phase distribution of conventional OAM beams. Meanwhile, the trajectory of BVBs generated are highly compatible with the predesigned trajectory by using this method. Moreover, we evaluate the free-space transmission performance of BVBs under atmospheric turbulence and limited receiving aperture. The results show that BVBs have better OAM FSO communication link performance compared with conventional OAM beams and Bessel beams. In addition, the performance of the BVBs circumventing obstructions is further investigated. The simulation results show that when setting the atmospheric turbulence strength D/r0 = 2 and the obstruction size of 40 mm, the average received optical power of the BVBs captured by a limited receiving aperture diameter (d = 40 mm) is improved about 7 dB and 3 dB compared to conventional OAM beams and Bessel beams, respectively.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Chongqing

Science and Technology Research Program of Chongqing Municipal Education Commission

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3