Generalized optical signal-to-noise ratio monitoring using a convolutional neural network for digital coherent receivers

Author:

Cho Hyung Joon1

Affiliation:

1. Korea Advanced Institute of Science and Technology (KAIST)

Abstract

In this Letter, we propose a generalized optical signal-to-noise ratio (GOSNR) monitoring scheme using a convolutional neural network trained on constellation density features acquired from a back-to-back setup and demonstrate accurate GOSNR estimations for links having different nonlinearities. The experiments were carried over dense wavelength division multiplexing links configured on 32-Gbaud polarization division multiplexed 16-quadrature amplitude modulation (QAM) and demonstrated that the GOSNRs are estimated within 0.1 dB mean absolute error with maximum estimation errors below 0.5 dB on metro class links. The proposed technique does not require any information about the noise floor in the conventional spectrum-based means and therefore is readily deployable for real-time monitoring.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3