Affiliation:
1. Space Engineering University
Abstract
Recent years have witnessed a growing research interest in the rotational Doppler effect associated with orbital angular momentum of light, emerging as a powerful tool to detect rotating bodies in remote sensing. However, this method, when exposed to the turbulence in a realistic environment, has some severe limitations, leading to the unrecognizable rotational Doppler signals overwhelmed in background noise. Here we put forward a concise yet efficient method that enables the turbulence-resilient detection of the rotational Doppler effect with cylindrical vector beams. Specifically, by adopting the polarization-encoded dual-channel detection system, the low-frequency noises caused by turbulence can be individually extracted and subtracted, and thus mitigate the effect of turbulence. We demonstrate our scheme by conducting proof-of-principle experiments, whose results manifest the feasibility of a practical sensor to detect the rotating bodies in non-laboratory conditions.
Funder
Program for New Century Excellent Talents in University
Natural Science Foundation of Fujian Province
National Natural Science Foundation of China
Key Research Projects of Foundation Strengthening Program of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献