Addressing data scarcity in optical matrix multiplier modeling using transfer learning

Author:

Cem AliORCID,Jovanovic Ognjen,Yan Siqi1,Ding Yunhong,Zibar Darko,Da Ros FrancescoORCID

Affiliation:

1. Huazhong University of Science and Technology

Abstract

We present and experimentally evaluate the use of transfer learning to address experimental data scarcity when training neural network (NN) models for Mach–Zehnder interferometer mesh-based optical matrix multipliers. Our approach involves pretraining the model using synthetic data generated from a less accurate analytical model and fine-tuning it with experimental data. Our investigation demonstrates that this method yields significant reductions in modeling errors compared to using an analytical model or a standalone NN model when training data is limited. Utilizing regularization techniques and ensemble averaging, we achieve <1 dB root-mean-square error on the 3×3 matrix weights implemented by a photonic chip while using only 25% of the available data.

Funder

Villum Fonden

Key Research and Development Program of Hubei Province

National Natural Science Foundation of China

European Research Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3