Affiliation:
1. School of Information Engineering, Guangdong University of Technology
Abstract
Optical multicasting, which involves delivering an input signal to multiple different channels simultaneously, is a key function to improve network performance. By exploiting individual spatial modes as independent channels, mode-division-multiplexing (MDM) can solve the capacity crunch of traditional standard single-mode fiber (SSMF) transmission system. In order to realize mode multicasting with high flexibility in future hybrid wavelength-division-multiplexing (WDM) and MDM networks, we propose a mode multicasting scheme without parasitic wavelength conversion, based on the inter-modal four-wave mixing (FWM) arising in the few-mode fiber (FMF). The operation mechanism including nonlinear phase shift for efficient mode multicasting is analytically identified. Then, based on the derived operation condition, we numerically investigate the impact of the dual-pump power and the FMF length on the performance of mode multicasting. By properly setting the pump wavelength and the dual-pump power, mode multicasting performance, in terms of mode multicasting efficiency, 3-dB bandwidth, and destination wavelength, can be tuned according to various application scenarios. After the performance optimization, mode multicasting of 25-Gbaud and 100-Gbaud 16-quadratic-amplitude modulation (16-QAM) signals is numerically demonstrated. The proposed reconfigurable mode multicasting is promising for future WDM-MDM networks.
Funder
National Natural Science Foundation of China
Guangdong Introducing Innovative and Entrepreneurial Teams of “The Pearl River Talent Recruitment Program”
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献