High performance few-mode fiber-based light field direction sensing system using deep convolutional neural network: fiber speckle demodulation network (FSDNET)

Author:

Wen Ya1,Zhao Xing123,Jiang Zhixiang1,Li Haoran1,Li Da123ORCID

Affiliation:

1. Nankai University, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology

2. Nankai University Affiliated Eye Hospital, Nankai University

3. Prosper-Vision (Tianjin) Optoelectronics Technology Co.

Abstract

Precisely sensing the light field direction information plays the essential role in the fields of three-dimensional (3D) imaging, light field sensing, target positioning and tracking, remote sensing, etc. It is thrilling to find that the optical fiber can be used as a sensing component due to its high sensitivity, compact size, and strong resistance to electromagnetic interference. According to the core principle that the few-mode fiber output speckle pattern is sensitive to the change of incident light field direction, the variation characteristics is further investigated in this research study. Based on the simulation and analysis of the fiber transmission characteristics, the output speckle corresponding to the incident light field with the direction in the range of ±6° horizontally and vertically are calculated. Furthermore, a deep convolutional neural network (CNN): fiber speckle demodulation network (FSDNET) is proposed and constructed to establish what we believe to be a novel way to reveal and identify the mapping relationship between the light field direction and the output speckle. The theoretical simulation shows that the mean absolute error (MAE) between the perceived light field directions and the true directions is 0.01°. Then, a light field direction sensing system based on the few-mode fiber is developed. Regarding to the performance of the sensing system, the MAE of the FSDNET for the light field directions that have appeared in the training set is 0.0389°, and for testing set of the unknown directions that have not appeared in the training set, the MAE is 0.0570°. Therefore, the simulation and experimental results prove that high performance sensing of light field direction can be achieved by the proposed few-mode fiber sensing system and the FSDNET.

Funder

Fundamental Research Funds for the Central Universities, Nankai University

National Natural Science Foundation of China

Nankai University Eye Institute

China Postdoctoral Science Foundation

Enterprise R&D Special Project of Tiankai Higher Education Science and Technology Innovation Park

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3