Affiliation:
1. Marine Design & Research Institute of China
2. Luoyang Ship Material Research Institute
Abstract
This work proposed and demonstrated a bi-functional metamaterial to implement the multispectral camouflage in infrared and microwave bands. Aiming at integrating broadband, wide-angle and low infrared emissivity into one structure, the bi-functional structure is made up of three metasurface layers with different functions. Specifically, a metasurface superstrate based on hexagonal metallic patch was deployed to achieve a low infrared emissivity and a high transmittance of microwave simultaneously. In the framework of equivalent circuit model, the bi-functional structure was designed and optimized. A dielectric transition layer was introduced into the structure to obtain better microwave absorption performances. A sample of such structure was prepared based on optimized geometric parameters and tested. The simulated and measured results indicate that the novel hexagonal patch metasurface superstrate significantly reduces infrared emissivity and the measured emissivity of the structure is about 0.144 in 8-14µm infrared band. Meanwhile, the multilayered structure has a broadband absorption band from 2.32 GHz to 24.8 GHz with 7 mm thickness and is equipped with good angular stability under oblique incidence. In general, the method and specific design proposed in this work will benefit utilizing metasurface to implement bi-functional microwave and infrared camouflage materials with outstanding performances, which are promising for extensive applications.
Funder
National Natural Science Foundation of China
Open Fund of Key Laboratory of Materials Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology of the People's Republic of China
Fundamental Research Funds for the Central Universities
Priority Academic Program Development of Jiangsu Higher Education Institutions
Jiangsu Provincial Key Laboratory of Advanced Manipulating Technique of Electromagnetic Wave
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献