Abstract
In this work, the intensity noise transfer properties of a two-stage single-frequency fiber amplifier at 1 µm are systematically investigated in the frequency domain. By applying an artificial modulation signal to the driving current of the first- and second-stage pump sources, the pump and signal transfer functions of the second-stage amplifier are experimentally measured from 10 Hz to 100 kHz. By associating the theoretical model, the effects of pump power, the operating wavelength, and the absorption coefficient of the gain fiber on the pump and signal transfer properties are analyzed based on the experimental measurements. It turns out that the gain dynamics of the last-stage amplifier play an important role in determining the noise performances of the final amplified laser. Because the pump and signal transfer functions essentially behave as a low pass and damped high pass filter, the pump intensity noise of the last-stage amplifier dominates the amplifier system’s overall noise performance. In addition, the effects of amplified spontaneous emission (ASE) on the intensity noise transfer properties are nontrivial, although it is not included in the theoretical model. It is believed that the current work provides a useful guideline for optimizing the design of high-power single-frequency fiber amplifiers with low-intensity noise.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Postgraduate Scientific Research Innovation Project of Hunan Province
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献