Improved QoT estimations through refined signal power measurements and data-driven parameter optimizations in a disaggregated and partially loaded live production network

Author:

He Yan1ORCID,Zhai Zhiqun2,Dou Liang2,Wang Lingling2,Yan Yaxi1,Xie Chongjin2,Lu Chao1,Lau Alan Pak Tao1

Affiliation:

1. The Hong Kong Polytechnic University

2. Alibaba Group

Abstract

Accurate quality of transmission (QoT) estimations are essential enablers for future low-margin dynamic optical network operations. However, physical parameter measurement uncertainties and other intractable signal propagation effects degrade the accuracy of QoT estimation, especially in live production networks. The recent trend of network disaggregation further exacerbates the issue, and a vendor-agnostic accurate QoT estimator is much needed. In this paper, we study Gaussian-noise-model-based QoT estimation in a large-scale disaggregated and partially loaded live production network with monitored physical layer data spanning across 8 months. We first propose refining the signal power measurements by combining the inline amplifier and optical channel monitor (OCM) power measurements, followed by estimating the gain and noise power profiles of each inline amplifier, which in turn improves QoT estimation accuracy. We further introduce an optical multiplex section and frequency bias to the analytical model to incorporate intractable location-specific and spectral effects in the network and proposed data-driven parameter optimizations to learn the biases as well as erbium-doped fiber amplifier noise figures. The (mean, standard deviation) of the QoT estimation errors were reduced from (−0.1043, 0.6037) dB using average amplifier power and (−0.7875, 0.6337) dB using OCM power to (−0.0964, 0.4649) dB after input parameter refinements and were further reduced to (0.0046, 0.2377) dB with data-driven parameter optimization. The proposed methodologies are simple procedures that network operators can adopt to optimize analytical-model-based QoT estimators and/or serve as feature engineering procedures preceding machine-learning-based QoT in realistic disaggregated live production networks.

Funder

Innovation and Technology Fund

Publisher

Optica Publishing Group

Subject

Computer Networks and Communications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3