Abstract
A time lens allows one to stretch or compress optical waveforms in time, similar to the conventional lens in space. However, a single-time-lens imaging system always imparts a residual temporal chirp on the image, which may be detrimental for quantum networks, where the temporal image interacts with other fields. We show that a two-time-lens imaging system satisfying the telescopic condition, a time telescope, is necessary and sufficient for creating a chirpless image. We develop a general theory of a time telescope, find the conditions for loss minimization, and show how an erecting time telescope creating a real image of a temporal object can be constructed. We consider several applications of such a telescope to making indistinguishable the photons generated by spontaneous parametric downconversion or single emitters such as quantum dots.
Funder
QuantERA
Agence Nationale de la Recherche
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献