LSPR optical fiber sensor based on 3D gold nanoparticles with monolayer graphene as a spacer

Author:

Feng Jingwen1,Gao Jinjuan1ORCID,Yang Wen2,Liu Runcheng1,Shafi Muhammad1ORCID,Zha Zhipeng1,Liu Cong1,Xu Shicai3,Ning Tingyin1ORCID,Jiang Shouzhen1ORCID

Affiliation:

1. Shandong Normal University

2. Shandong University

3. Dezhou University

Abstract

Localized surface plasmon resonance (LSPR) optical fiber biosensing is an advanced and powerful label-free technique which gets great attention for its high sensitivity to refractive index change in surroundings. However, the pursuit of a higher sensitivity is still challenging and should be further investigated. In this paper, based on a monolayer graphene/gold nanoparticles (Grm/Au NPs) three-dimensional (3D) hybrid structure, we fabricated a D-shaped plastic optical fiber (D-POF) LSPR sensor using a facile two-step method. The coupling enhancement of the resonance of this multilayer structure was extremely excited by the surface plasmon property of the stacked Au NPs/Grm layer. We found that the number of plasmonic structure layers was of high importance to the performance of the sensor. Moreover, the optimal electromagnetic field enhancement effect was found in three-layer plasmonic structure. Besides, the n*(Grm/Au NPs)/D-POF sensor exhibited outstanding performance in sensitivity (2160 nm/RIU), linearity (linear fitting coefficient R2 = 0.996) and reproducibility. Moreover, the sensor successfully detected the concentration of glucose, achieving a sensitivity of 1317.61 nm/RIU, which suggested a promising prospect for the application in medicine and biotechnology.

Funder

National Natural Science Foundation of China

Shandong Provincial Key Laboratory of Biophysics

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3