Accurate calibration for fringe projection profilometry based on an improved subpixel mapping with local gray distribution

Author:

Liu Bin1ORCID,He Xinxin2,Wang Chunliu,Wang Sen,Wu Guanhao1ORCID

Affiliation:

1. Tsinghua University

2. Hainan College of Software Technology

Abstract

Fringe projection profilometry is an efficient and accurate technique for three-dimensional (3D) measurement to calibrate a camera and projector setup. The feature centers of circles on a calibration board are extracted on the camera image plane and mapped to the projector image plane during the calibration procedure. The accuracy of the mapping between camera pixels and projector pixels is crucial to the calibration accuracy, which directly affects the measurement precision of the system. In this paper, we investigate an improved subpixel mapping with local gray distribution from the camera to the projector. The mapped pixels and their gray values are regarded as a set of 3D grayscale space points. The subpixel coordinates of the feature centers on the projector image plane are obtained by directly processing the 3D points. The entire procedure retains the subpixel precision. Calibration experiments were designed to verify the feasibility of our calibration method, which was compared to three existing methods. The reprojection errors and object-space errors were used to evaluate the calibration accuracy of the methods. Additionally, measurement experiments of displacement and in-plane distance were employed to verify the calibration results of the methods. Compared to the three existing methods, we believe our method can improve the calibration accuracy for fringe projection profilometry.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Tianjin “Project+Team” Key Training Project

Tianjin Graduate Research and Innovation Project

Graduate Research and Innovation Project in Tianjin University of Technology

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3