Affiliation:
1. Chengdu Normal University
2. Central South University
Abstract
The self-healing properties of symmetrical power-exponent-phase vortices (SPEPVs) are analyzed in this paper. By placing an obstacle in the optical path of SPEPVs, we simulated the propagation of the obstructed SPEPVs and verified the self-healing of the beam theoretically. We also explored the influence of external factors (e.g., obstacle size and position) and internal parameters (topological charge l and power exponent n) on the self-healing effect of obstructed SPEPVs. Furthermore, the energy flow density, similarity coefficient, effective self-healing distance, and diffraction efficiency of the obstructed SPEPVs were also discussed. The results demonstrated that the transverse energy flows around the obstructed region of SPEPVs will recover with the propagation distance increased, and the effective self-healing distance gradually increases linearly with the obstacle size r
x
increased. The self-healing characteristic gives the petal-like SPEPVs the ability to trap microparticles three-dimensionally.
Funder
National Natural Science Foundation of China
Science Foundation of Educational Commission of Hubei Province of China
Natural Science Foundation of Hubei Province
Subject
Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献