Affiliation:
1. University of Shanghai for Science and Technology
2. Badji-Mokhtar Annaba University
Abstract
Fiber-optic magnetic field sensors based on magnetic fluid (MF) is encountering with thermal effects and demand for vectorization for several years. A common solution is to use axially processed fiber cascaded with fiber Bragg grating (FBG). However, the length of such sensors is usually in centimeter-level, which restricts the sensing applications in narrow space and gradient field cases. In this work, we present an ultracompact reflection-type dual-channel sensor for vector magnetic field (Channel 1, referred as CH1) and temperature (Channel 2, referred as CH2) monitoring, which is composed of a pair of gold-plated wedge-shaped multimode fiber (MMF) tip and gold-plated multimode-no-core fiber (MNF) tip. The surface plasmon resonance (SPR) effect was adopted. The two sensor probes are coated with magnetic-field-sensitive MF and temperature-sensitive polydimethylsiloxane (PDMS), respectively. The issue of vector magnetic field and temperature cross-sensitivity is tactfully resolved. Importantly, the proposed sensing probes are ultracompact and the spatial resolution is extremely small (615 µm for CH1 based on wedge-shaped fiber tip and 2 mm for CH2 based on MNF), which is very helpful for narrow space and gradient magnetic field detection. The obtained magnetic field intensity sensitivities are 1.10 nm/mT (90° direction) and –0.26 nm/mT (0° direction), and temperature sensitivity is –3.12 nm/°C.
Funder
National Natural Science Foundation of China
Shanghai Shuguang Program
Subject
Atomic and Molecular Physics, and Optics
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献