Single pixel imaging at high pixel resolutions

Author:

Stojek Rafał12,Pastuszczak Anna1ORCID,Wróbel Piotr1,Kotyński Rafał1ORCID

Affiliation:

1. University of Warsaw

2. Vigo System

Abstract

The usually reported pixel resolution of single pixel imaging (SPI) varies between 32 × 32 and 256 × 256 pixels falling far below imaging standards with classical methods. Low resolution results from the trade-off between the acceptable compression ratio, the limited DMD modulation frequency, and reasonable reconstruction time, and has not improved significantly during the decade of intensive research on SPI. In this paper we show that image measurement at the full resolution of the DMD, which lasts only a fraction of a second, is possible for sparse images or in a situation when the field of view is limited but is a priori unknown. We propose the sampling and reconstruction strategies that enable us to reconstruct sparse images at the resolution of 1024 × 768 within the time of 0.3s. Non-sparse images are reconstructed with less details. The compression ratio is on the order of 0.4% which corresponds to an acquisition frequency of 7Hz. Sampling is differential, binary, and non-adaptive, and includes information on multiple partitioning of the image which later allows us to determine the actual field of view. Reconstruction is based on the differential Fourier domain regularized inversion (D-FDRI). The proposed SPI framework is an alternative to both adaptive SPI, which is challenging to implement in real time, and to classical compressive sensing image recovery methods, which are very slow at high resolutions.

Funder

Narodowe Centrum Nauki

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rosette‐scan tomographic single‐pixel imager;Electronics Letters;2023-10

2. Compressive time-resolved multispectral fluorescence microscopy with single-pixel camera;Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXX;2023-05-16

3. Computational based time-resolved multispectral fluorescence microscopy;APL Photonics;2023-04-01

4. Modular, multispectral infrared imaging system for reflection and transmission measurements;Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XXI;2023-03-15

5. Efficient sparse Fourier single-pixel imaging;Optoelectronic Imaging and Multimedia Technology IX;2023-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3