Real-time in-situ optical detection of fluid viscosity based on the Beer-Lambert law and machine learning

Author:

Zhou Zhuoyan1ORCID,Zhao Lilong,Zhang Xinyang1,Cui Fenping,Guo Linfeng

Affiliation:

1. Nanjing University of Information Science & Technology

Abstract

As an important physical quantity to describe the resistance of fluid to flow, viscosity is an essential property of fluids in fluid mechanics, chemistry, medicine, as well as hydraulic engineering. While traditional measurement methods, including the rotating-cylinder method, capillary tube method and falling sphere method, have significant drawbacks especially in terms of accuracy, response time and the sample must be made to move. In this work, a novel Beer-Lambert law-based method was proposed for the viscosity measurement. Specifically, this work demonstrates that viscosity can be quantitatively reflected by spectral line intensity, and castor oil was selected due to its viscous temperature properties (viscosity has been accurately measured under different temperature), and its transmission spectrum at different temperatures ranging from 10 to 50°C was detected firstly. Then, the principal component analysis (PCA) was employed to obtain the intrinsic features of the transmission spectrum. Finally, the processed data was utilized to train and verify the radial basis function (RBF) neural network. As a result, the accuracy of the predictions conducted by means of the RBF reached 98.45%, which indicates the complicated and non-linear relationships between spectra formation and viscosity can be depicted well by RBF. The results show that the real-time in-situ optical detection method adopted in this work represents a great leap forward in the viscosity measurement, which fundamentally reforms the traditional viscosity measurement methods.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

NUIST Students’ Platform for Innovation and Entrepreneurship Training Program

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3