Loss in hollow-core optical fibers: mechanisms, scaling rules, and limits

Author:

Numkam Fokoua EricORCID,Abokhamis Mousavi SeyedORCID,Jasion Gregory T.ORCID,Richardson David J.,Poletti Francesco

Abstract

Over the past few years, progress in hollow-core optical fiber technology has reduced the attenuation of these fibers to levels comparable to those of all-solid silica-core single-mode fibers. The sustained pace of progress in the field has sparked renewed interest in the technology and created the expectation that it will one day enable realization of the most transparent light-propagating waveguides ever produced, across all spectral regions of interest. In this work we review and analyze the various physical mechanisms that drive attenuation in hollow-core optical fibers. We consider both the somewhat legacy hollow-core photonic bandgap technology as well as the more recent antiresonant hollow-core fibers. As both fiber types exploit different guidance mechanisms from that of conventional solid-core fibers to confine light to the central core, their attenuation is also dominated by a different set of physical processes, which we analyze here in detail. First, we discuss intrinsic loss mechanisms in perfect and idealized fibers. These include leakage loss, absorption, and scattering within the gas filling the core or from the glass microstructure surrounding it, and roughness scattering from the air–glass interfaces within the fibers. The latter contribution is analyzed rigorously, clarifying inaccuracies in the literature that often led to the use of inadequate scaling rules. We then explore the extrinsic contributions to loss and discuss the effect of random microbends as well as that of other perturbations and non-uniformities that may result from imperfections in the fabrication process. These effects impact the loss of the fiber predominantly by scattering light from the fundamental mode into lossier higher-order modes and cladding modes. Although these contributions have often been neglected, their role becomes increasingly important in the context of producing, one day, hollow-core fibers with sub-0.1-dB/km loss and a pure single-mode guidance. Finally, we present general scaling rules for all the loss mechanisms mentioned previously and combine them to examine the performance of recently reported fibers. We lay some general guidelines for the design of low-loss hollow-core fibers operating at different spectral regions and conclude the paper with a brief outlook on the future of this potentially transformative technology.

Funder

Engineering and Physical Sciences Research Council

Royal Academy of Engineering

H2020 European Research Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3