64-Pixel Mo80Si20 superconducting nanowire single-photon imager with a saturated internal quantum efficiency at 1.5 µm

Author:

Wang Hui1,Zhao Qing-Yuan12ORCID,Kong Ling-Dong1,Chen Shi1,Huang Yang-Hui1,Hao Hao1,Guo Jia-Wei1,Pan Dan-Feng1,Tu Xue-Cou12,Zhang La-Bao12ORCID,Jia Xiao-Qing12,Chen Jian12ORCID,Kang Lin12,Wu Pei-Heng12

Affiliation:

1. Nanjing University

2. Purple Mountain Laboratories

Abstract

A superconducting nanowire single-photon imager (SNSPI) uses a time-multiplexing method to reduce the readout complexity. However, due to the serial connection, the nanowire should be uniform so that a common bias can set all segments of the nanowire to their maximum detection efficiency, which becomes more challenging as the scalability (i.e., the length of the nanowire) increases. Here, we have developed a 64-pixel SNSPI based on amorphous Mo80Si20 film, which yielded a uniform nanowire and slow transmission line. Adjacent detectors were separated by delay lines, giving an imaging field of 270 µm × 240 µm. Benefiting from the high kinetic inductance of Mo80Si20 films, the delay line gave a phase velocity as low as 4.6 µm/ps. The positions of all pixels can be read out with a negligible electrical cross talk of 0.02% by using cryogenic amplifiers. The timing jitter was 100.8 ps. Saturated internal quantum efficiency was observed at a wavelength of 1550 nm. These results demonstrate that amorphous film is a promising material for achieving SNSPIs with large scalability and high efficiency.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Jiangsu Provincial Key Laboratory of Advanced Manipulating Technique of Electromagnetic Wave

Priority Academic Program Development of Jiangsu Higher Education Institutions

Fundamental Research Funds for the Central Universities

Program for Innovative Talents and Entrepreneur in Jiangsu

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3