Six-channel programmable coding metasurface simultaneously for orthogonal circular and linear polarizations

Author:

Liu TonghaoORCID,Meng YueyuORCID,Wang Jiafu,Ma Hua,Zhu RuichaoORCID,Liu Chao,Li Weihan1,Chu ZuntianORCID,Sui SaiORCID,Qiu Tianshuo,Tang Wenxuan1ORCID,Qu Shaobo

Affiliation:

1. Southeast University

Abstract

Metasurfaces have intrigued long-standing research interests and developed multitudinous compelling applications owing to their unprecedented capability for manipulating electromagnetic waves, and the emerging programmable coding metasurfaces (PCMs) provide a real-time reconfigurable platform to dynamically implement customized functions. Nevertheless, most existing PCMs can only act on the single polarization state or perform in the limited polarization channel, which immensely restricts their practical application in multitask intelligent metadevices. Herein, an appealing strategy of the PCM is proposed to realize tunable functions in co-polarized reflection channels of orthogonal circularly polarized waves and in co-polarized and cross-polarized reflection channels of orthogonal linearly polarized waves from 9.0 to 10.5 GHz. In the above six channels, the spin-decoupled programmable meta-atom can achieve high-efficiency reflection and 1-bit digital phase modulation by selecting the specific ON/OFF states of two diodes, and the phase coding sequence of the PCM is dynamically regulated by the field-programmable gate array to generate the desired function. A proof-of-concept prototype is constructed to verify the feasibility of our methodology, and numerous simulation and experimental results are in excellent agreement with the theoretical predictions. This inspiring design opens a new avenue for constructing intelligent metasurfaces with higher serviceability and flexibility, and has tremendous application potential in communication, sensing, and other multifunctional smart metadevices.

Funder

Air Force Engineering University

Natural Science Basic Research Program of Shaanxi Province

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3