Comparison of whole blood and serum samples of breast cancer based on laser-induced breakdown spectroscopy with machine learning

Author:

Idrees Bushra Sana1ORCID,Teng Geer1ORCID,Israr Ayesha2,Zaib Huma2,Jamil Yasir2,Bilal Muhammad34,Bashir Sajid5,Khan M. Nouman1,Wang Qianqian16ORCID

Affiliation:

1. Beijing Institute of Technology

2. University of Agriculture Faisalabad

3. Institute of Engineering Thermophysics, Chinese Academy of Sciences

4. University of Chinese Academy of Sciences

5. Punjab Institute of Nuclear Medicine Hospital

6. Yangtze Delta Region Academy of Beijing Institute of Technology

Abstract

To identify cancer from non-cancer is one of the most challenging issues nowadays in the early diagnosis of cancer. The primary issue of early detection is to choose a suitable type of sample collection to diagnose cancer. A comparison of whole blood and serum samples of breast cancer was studied using laser-induced breakdown spectroscopy (LIBS) with machine learning methods. For LIBS spectra measurement, blood samples were dropped on a substrate of boric acid. For the discrimination of breast cancer and non-cancer samples, eight machine learning models were applied to LIBS spectral data, including decision tree, discrimination analysis, logistic regression, naïve byes, support vector machine, k-nearest neighbor, ensemble and neural networks classifiers. Discrimination between whole blood samples showed that narrow neural networks and trilayer neural networks both provided 91.7% highest prediction accuracy and serum samples showed that all the decision tree models provided 89.7% highest prediction accuracy. However, using whole blood as sample achieved the strong emission lines of spectra, better discrimination results of PCA and maximum prediction accuracy of machine learning models as compared to using serum samples. These merits concluded that whole blood samples could be a good option for the rapid detection of breast cancer. This preliminary research may provide the complementary method for early detection of breast cancer.

Funder

National Natural Science Foundation of China

Higher Education Commission, Pakistan

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3